Dietary Exposure of Fathead Minnows to the Explosives TNT and RDX and to the Pesticide DDT using Contaminated Invertebrates

نویسندگان

  • Jerre G. Houston
  • Guilherme R. Lotufo
چکیده

Explosive compounds have been released into the environment during manufacturing, handling, and usage procedures. These compounds have been found to persist in the environment and potentially promote detrimental biological effects. The lack of research on bioaccumulation and bioconcentration and especially dietary transfer on aquatic life has resulted in challenges in assessing ecological risks. The objective of this study was to investigate the potential trophic transfer of the explosive compounds 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using a realistic freshwater prey/predator model and using dichlorodiphenyltrichloroethane (DDT), a highly bioaccumulative compound, to establish relative dietary uptake potential. The oligochaete worm Lumbriculus variegatus was exposed to 14C-labeled TNT, RDX or DDT for 5 hours in water, frozen in meal-size packages and subsequently fed to individual juvenile fathead minnows (Pimephales promelas). Fish were sampled for body residue determination on days 1, 2, 3, 4, 7, and 14 following an 8-hour gut purging period. Extensive metabolism of the parent compound in worms occurred for TNT but not for RDX and DDT. Fish body residue remained relatively unchanged over time for TNT and RDX, but did not approach steady-state concentration for DDT during the exposure period. The bioaccumulation factor (concentration in fish relative to concentration in worms) was 0.018, 0.010, and 0.422 g/g for TNT, RDX and DDT, respectively, confirming the expected relatively low bioaccumulative potential for TNT and RDX through the dietary route. The experimental design was deemed successful in determining the potential for trophic transfer of organic contaminants via a realistic predator/prey exposure scenario.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigations of transcript expression in fathead minnow (Pimephales promelas) brain tissue reveal toxicological impacts of RDX exposure.

Production, usage and disposal of the munitions constituent (MC) cyclotrimethylenetrinitramine (RDX) has led to environmental releases on military facilities. The chemical attributes of RDX are conducive for leaching to surface water which may put aquatic organisms at risk of exposure. Because RDX has been observed to cause aberrant neuromuscular effects across a wide range of animal phyla, we ...

متن کامل

Improved removal of Trinitrotoluene (TNT) from contaminated soil by inducing aerobic process: kinetic and chemical byproducts

This study describes the biological degradation of TNT by using induced aeration. Three plastic reactors were used. In each reactor 3 kg of soil were used. In order to increase the porosity of the soil, sawdust was added to soil. Textile wastewater treatment plant sludge was also added to soil. TNT at the concentrations of 1000 mg/kg of soil was added thereafter. Rhamnolipid biosurfactant at th...

متن کامل

Phytoremediation of Explosives using Transgenic Plants

In the past century, several explosive compounds have become the major soil contaminants causing health and economic challenges to the society. In the U.S. alone millions of hectares of land are contaminated by various forms of explosives. The two most dangerous explosives, 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5trinitro-1,3,5-triazine (Royal Demolition Explosive; RDX), are major enviro...

متن کامل

Environmental Behavior and Fate of Explosives in Groundwater from the Milan Army Ammunition Plant in Aquatic and Wetland Plants

The present study was performed to elucidate the environmental behavior and fate of TNT and RDX in aquatic and wetland plants collected from a field-scale wetland demonstration deployed at Milan Army Ammunition Plant for removal of explosives from groundwater. The study had three objectives: (1) To establish the physiological capacity of plants to absorb and transport TNT or RDX from explosives...

متن کامل

Stimulating the anaerobic biodegradation of explosives by the addition of hydrogen or electron donors that produce hydrogen.

The anaerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 2,4,6-trinitrotoluene (TNT) by a methanogenic mixed culture was investigated. Microcosms containing a basal medium and the mixed culture were amended with ethanol, propylene glycol (PG), butyrate or hydrogen gas as the electron donor and a mixture of TNT (50...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2005